Identifying a Topic for DPhil Research

Applicants are encouraged to develop their own research topic with the relevant staff members listed below. In discussion with the School's research staff you will be able to refine your own ideas and develop a project that we can effectively supervise. Research staff will be happy to discuss potential DPhil topics in human, physical and environmental geography.

Potential Supervisors

A list of potential DPhil supervisors at the School of Geography and the Environment is provided below. Please note that research staff from the School's research centres: the Environmental Change Institute (ECI), Smith School of Enterprise and the Environment (SSEE), and Transport Studies Unit (TSU) can also be contacted with regard to supervision but are only able to co-supervise with a main supervisor from the list of academic staff members below.

NameCollege(s)Summary of Research Interests
Professor Myles AllenProfessor Myles Allen
Professor of Geosystem Science
Linacre College, OxfordLinacre CollegeHow human and natural influences on climate contribute to observed climate change and risks of extreme weather and in quantifying their implications for long-range climate forecasts.
Dr Elizabeth BaigentDr Elizabeth Baigent
University Reader in the History of Geography
Wycliffe Hall, OxfordWycliffe HallHistory of cartography, history of exploration, history of travel, history of Scandinavia, biography, with special interest in how all of these things affect women.
Dr Richard BaileyDr Richard Bailey
Associate Professor in Geochronology
St Catherine's College, OxfordSt Catherine's CollegeQuaternary palaeoclimate; geochronology (particularly luminescence-based methods) associated with environmental change, archaeology and palaeoanthrolpology; modelling luminescence processes; observations and modelling of vegetation patterning and critical thresholds in semi-arid systems; critical thresholds in environmental systems.
Dr Christian BrandDr Christian Brand
Senior Research Fellow and Associate Professor at the ECI and TSU
Linacre College, OxfordLinacre CollegeTransport, energy and climate change policy. Systems modelling. Carbon effects of walking and cycling. Socio-technical transitions towards low-carbon, energy efficient transport systems. Measurement and evaluation of policy measures and interventions. Christian encourages graduate projects that address current challenges in the fields of 'transport and health' and 'transport and energy'. For instance, the PASTA project is producing a stream of good survey and 'objective' data, which presents a great opportunity for an analytical mind to answer research questions on key determinants of active travel and its wider transport, health and carbon impacts.
Dr Ben CaldecottDr Ben Caldecott
Director, Oxford Sustainable Finance Programme and Associate Professor
Oriel College, OxfordOriel CollegeSustainable finance and investment topics, including: active ownership, the carbon bubble, climate finance, conservation finance, disclosure, divestment, engagement, ESG, green banks, green bonds, green benchmarks and indices, impact investing, public private partnerships, reporting, responsible investment, stranded assets, and green taxonomies.
Dr Katrina CharlesDr Katrina Charles
Senior Research Fellow
No college affiliationImproving access to and sustainability of water supply and sanitation systems; Stimulating demand for sanitation; Fate and transport of viruses in the environment.
Professor Simon DadsonProfessor Simon Dadson
Professor of Hydrology
Christ Church, OxfordChrist ChurchProcesses that link climate, hydrology, and geomorphology.
Professor Patricia DaleyProfessor Patricia Daley
Professor of the Human Geography of Africa
Jesus College, OxfordJesus CollegeSub-Saharan Africa, especially topics on issues of forced migration; humanitarianism; gender; militarism; violence and ethnicity; as well as on aspects of political ecology in relation to land tenure; natural resource exploitation; community management of natural resources; forestry; indigenous knowledge; and wildlife conservation.
Dr Sarah DarbyDr Sarah Darby
Associate Professor, ECI
No college affilicationThe potential for demand response in electricity systems; electricity grids as dynamic socio-technical systems; smart metering; implications of 'smart grids' for daily life, governance and environmental impact; energy feedback and advice.
Professor Danny DorlingProfessor Danny Dorling
Halford Mackinder Professor of Geography
St Peter's College, OxfordSt Peter's CollegeIssues of housing, health, employment, education, wealth and poverty.
Dr Dustin Evan GarrickDr Dustin Evan Garrick
Associate Professor and Departmental Research Lecturer in Environmental and Resource Management
Green Templeton College, OxfordGreen Templeton CollegeProperty rights and resource allocation; collective action and the commons; environmental governance; water allocation reform and water markets; decentralisation and disaster risk governance with an emphasis on drought; the institutional analysis and development (IAD) framework.
Dr Beth GreenhoughDr Beth Greenhough
Associate Professor in Human Geography
Keble College, OxfordKeble CollegeSocial implications of scientific innovations in the areas of health, biomedicine and the environment; Social, cultural and ethical processes through which humans and animals are made available as experimental subjects for biomedical research; New theoretical and methodological approaches within Geography better able to capture the material and affective dimensions of human-environment relations and how these are being reconfigured through biotechnological innovation.
Dr Richard GrenyerDr Richard Grenyer
Associate Professor in Biodiversity and Biogeography
Jesus College, OxfordJesus CollegeConservation - in particular conservation strategy, systematic conservation planning, biodiversity measurement and valuation. Biogeography, ecology and evolutionary ecology - particularly of mammals and plants. Phylogeography and phyloinformatics.
Dr Philipp GrünewaldDr Philipp Grünewald
EPSRC Fellow
Oriel College, OxfordOriel CollegeUnderstanding patterns of electricity consumption, activities and their flexibility through app-based large scale data collection. Energy systems: modelling, integration of renewables, role of electricity storage, demand response options, system flexibility, strategic transition towards a low carbon future.
Professor Jim HallProfessor Jim Hall
Professor of Climate and Environmental Risks
Linacre College, OxfordLinacre CollegeWater resource systems, flooding and adaptation to climate change. Resilience of infrastructure systems modelling and policy analysis. Decision making under uncertainty. Risk analysis.
Dr Neil HartDr Neil Hart
Departmental Lecturer in Physical Geography and Career Development Fellow
Christ Church, OxfordChrist ChurchWeather-climate interactions, particularly in the subtropical hydroclimates. Dynamical processes underpinning regional climate change. The upscale impact of convective hotspots on regional circulation. Climate dynamics of African regions. Extreme weather risks.
Professor Cameron HepburnProfessor Cameron Hepburn
Director of the Smith School of Enterprise and the Environment and Professor of Environmental Economics
New College, OxfordNew College
St Edmund College, OxfordSt Edmund Hall
Environmental economics; specifically on the post-carbon transition, natural climate solutions, circular plastics, the energy revolution, integrating renewable energy, stranded assets and carbon budgets, carbon pricing.
Professor Rob HopeProfessor Rob Hope
Professor of Water Policy
No college affiliationWater security, policy and poverty in Africa and Asia. Rural water policy, institutions and finance. Emergence and performance of rural water enterprises; hybrid finance, water use behaviours and affordability. Technological innovation, monitoring systems and data analytics.
Dr Radhika KhoslaDr Radhika Khosla
Senior Research Associate in Environment and Energy, SSEE, and Research Director, Oxford India Centre for Sustainable Development
Somerville College, OxfordSomerville CollegeUrban responses to climate change and urban sustainable development. Energy demand and services consumption (focus on the built environment). Climate change mitigation and socio-technical transitions. Developing countries and transitioning cities. Quantitative trends, policy, governance and institutional analysis.
Dr Ian KlinkeDr Ian Klinke
Associate Professor in Human Geography
St John's College, OxfordSt John's CollegeGeopolitics and political geography, Germany, the Cold War, military landscapes, biopolitics, far-right politics, intellectual history, European integration.
Dr Sneha KrishnanDr Sneha Krishnan
Associate Professor in Human Geography
Brasenose College, OxfordBrasenose CollegeFeminist/queer studies, cities in the global South, geo-and biopolitics, childhood and youth, colonial and postcolonial geographies, South Asia.
Professor Anna Lora-WainwrightProfessor Anna Lora-Wainwright
Professor of the Human Geography of China
St Cross College, OxfordSt Cross CollegeEnvironmental justice, environmental health controversies, transition and social change in China, anthropological theory and ethnography. More specific topics: political ecology with particular interest in pollution and rural China, popular epidemiology and perceptions of risk, questioning the lay-expert divide, grassroots responses to health inequalities (especially in China and the developing world), cross-cultural environmental activism and environmental health activism, controversies in cancer epidemiology and lay cancer epidemiology.
Dr Jamie LorimerDr Jamie Lorimer
Associate Professor in Human Geography
Hertford College, OxfordHertford CollegeMore-than-human geographies. Cultures and politics of Nature, especially in relation to wildlife conservation and rewilding. Social studies of the microbiome. The cultures and politics of the Anthropocene. Animal studies and nonhuman charisma. Elephants.
Dr Marc Macias-FauriaDr Marc Macias-Fauria
Associate Professor in Physical Geography
St Peter's College, OxfordSt Peter's CollegeBiogeosciences. Ecologist with a special focus on cold environments. Coupling of physical and biological systems over a wide range of spatial and temporal scales. Study of ecological and biogeographic processes through the use and interpretation of long-term and palaeoecological records, modelling, and remote sensing.
Professor Yadvinder MalhiProfessor Yadvinder Malhi
Professor of Ecosystem Science
Oriel College, OxfordOriel CollegeInteractions between forest ecosystems, climate change and land-use change, including the utility of forest protection in mitigating climate change. Techniques applied in this research include plant ecophysiology, long term forest monitoring and short-term expeditions, forest micrometerological and flux measurements, manipulative experiments, and satellite remote sensing of intact forests and deforestation. His interests are global, but particularly focus on tropical forests, especially in the Andes and Amazon, and more recently on the woodlands of the Upper Thames.
Dr Fiona McConnellDr Fiona McConnell
Associate Professor in Human Geography
St Catherine's College, OxfordSt Catherine's CollegePolitical geography and critical geopolitics. Specifically the everyday construction of statehood and sovereignty in cases of tenuous territoriality (e.g. unrecognised/de facto states, exile governments, stateless nations). Theories of sovereignty, and the relationship between territory and authority. Theories of the state and the use of ethnographic methods to uncover everyday state practices. Diplomacy, minority communities and the UN system.
Professor Derek McCormackProfessor Derek McCormack
Professor of Cultural Geography
Mansfield College, OxfordMansfield CollegeGeographies of: air/atmosphere; the body, performance and movement; affect and emotion; art, experiment, and creativity; material cultures. Social/cultural theories and philosophies of space and time, particularly non-representational theory and post-structuralism.
Dr Janey MessinaDr Janey Messina
Associate Professor in Quantitative Social Science Methods
No college affiliationQuantitative health geography, medical geography, spatial epidemiology, disease ecology, geography of infectious diseases.
Dr Amber MurreyDr Amber Murrey
Associate Professor in Human Geography
Jesus College, OxfordJesus CollegeDecolonial political geographies and political ecologies. Politics of extraction and lived or embodied experiences of extraction, particularly in African societies and the global South. Geographies of resistance. Structural violence and geographies of violence. Decolonial thought and non-western epistemologies. Digital disruptions, cyber-protest and political geographies of the Internet. Queering development, post-development, decolonising development. Geopolitics of knowledge and movements to decolonise knowledge, particularly within universities or the social sciences.
Dr Imma OliverasDr Imma Oliveras
Departmental Research Lecturer in Ecosystems Science and Deputy Programme Leader on Ecosystems
Oriel College, OxfordOriel CollegeVegetation-fire/drought-climate interactions, disturbance ecology, pyrogeography, fire ecology, earth observation applied to monitor and detect environmental change impacts on the terrestrial biosphere. Stability and resilience of ecosystems.
Dr Friederike OttoDr Friederike Otto
Acting Director, ECI
Associate Professor, Climate Research Programme, ECI
No college affiliationHow human and natural influences on climate affect the risks of extreme weather events (event attribution) and the scientific, social and political implication of these changing risks in different parts of the world.
Dr Anna PlyushtevaDr Anna Plyushteva
Departmental Research Lecturer in Transport Studies
No college affiliationGeographies of urban transport and mobility; Qualitative and mixed research methods in transport geography; Transport and mobility from the perspective of gender and the household; Night-time urban mobilities; Links between commuting practices and workplace social relations; Sociological and anthropological perspectives on how we pay for transport services; Cities and mobilities in South-Eastern Europe.
Professor Gillian RoseProfessor Gillian Rose
Professor of Human Geography
St John's College, OxfordSt John's CollegeGeographies of contemporary visual culture, digitally-produced images and visual methodologies. I'm particularly interested in how new forms of digitally-mediated imagery and practices are emerging in both popular practices and in new design professions; in smart cities; and in critical modes of investigating and theorising these shifts. Also critical urban geography, histories of visual and other cultural practice, and critical cultural geographies more broadly.
Dr Tim SchwanenDr Tim Schwanen
Associate Professor in Transport Studies,
Director of the TSU
St Anne's College, OxfordSt Anne's CollegeThe everyday mobility of people, goods and information, and in particular: transitions to low carbon mobility and living in cities, with a specific focus on questions of social justice and governance; the rise and governance of smart, shared or autonomous mobility; the interactions between transport infrastructure development and socio-spatial inequalities; the effects of urban contexts on individuals' practices and experiences of mobility; the relationship between mobility, power and subject formation.
Dr Louise SlaterDr Louise Slater
Associate Professor in Physical Geography
Hertford College, OxfordHertford CollegeFlood processes; rivers; fluvial geomorphology; hydrology; climate; computation. Research topics: Detection and attribution of changes in flood processes and hydrological extremes (e.g. disentangling climatic versus land cover drivers); understanding and predicting how river channels and their networks adjust dynamically to shifting land cover and climate regimes; developing new statistical, mathematical or machine learning approaches for better forecasting major hydro-climatic events in the future. Research methodologies: data-driven, computer-based analyses; data science, statistical modelling, machine learning, satellite remote sensing.
Professor David S.G. ThomasProfessor David S.G. Thomas
Professor of Geography
Hertford College, OxfordHertford CollegeQuaternary environments in the low latitudes, especially Africa; luminescence dating applications; aeolain systems; land degradation and human-environment interactions in drylands and Africa; climate change impacts and adaptation.
Dr Alex VasudevanDr Alex Vasudevan
Associate Professor in Human Geography
Christ Church, OxfordChrist ChurchCritical urban geography: alternative urbanisms, radical politics and the geographies of protest: contemporary urbanisation and precarious living: the history of squatting and its relationship to broader currents in contemporary urban thinking: spatial theory and experimentation: cultural geographies of artistic practice: historical and cultural geographies of performance.
Professor Heather VilesProfessor Heather Viles
Professor of Biogeomorphology and Heritage Conservation,
Head of School of Geography and the Environment
Worcester College, OxfordWorcester CollegeGeomorphology and environmental change (especially in arid and karst environments); building stone deterioration and conservation; weathering and rock breakdown (especially in arid, coastal, karst and other extreme environments); rock breakdown on Mars and other planets.
Professor Richard WashingtonProfessor Richard Washington
Professor of Climate Science
Keble College, OxfordKeble CollegeAfrican climate science; climate change and variability in Africa; rainfall variability and prediction in Africa; mineral aerosol (dust) production and transport in Africa.
Professor Robert J. WhittakerProfessor Robert J. Whittaker
Professor of Biogeography
St Edmund College, OxfordSt Edmund HallIsland ecology and biogeography; conservation biogeography; diversity theory; macroecology. I have particular interests in the islands of the Macaronesian biogeographic region, and in themes connected with habitat island ecology and using islands as model systems in conservation.
Professor Giles WiggsProfessor Giles Wiggs
Professor of Aeolian Geomorphology
Brasenose College, OxfordBrasenose CollegeMeasuring and modelling aeolian processes in deserts with an emphasis on aeolian sediment transport; sand dune dynamics; dynamics of aeolian dust; desert geomorphology; and low latitude environmental change. Research techniques include fieldwork in southern Africa, Middle East, Central Asia and Australia in combination with wind tunnel and computer modelling. Enquiries concerning any aspect of desert geomorphology are welcomed.
Professor Dariusz WójcikProfessor Dariusz Wójcik
Professor of Economic Geography
St Peter's College, OxfordSt Peter's CollegeGeographies of finance, economic geography, financial centres and global cities (including Shanghai and Dubai), emerging market economies, corporate governance, environmental finance (including carbon markets), varieties and models of capitalism, geography of advanced business services (including finance, law, management consultancy and accountancy).

Examples of Specific Research Topics

Below is a list of topics which applicants might like to consider and discuss further with the relevant staff. This list is not exhaustive, however, if you wish to develop a research topic outside of this list then please feel welcome to contact a relevant member of staff for discussion. These topics do not have funding attached.

National infrastructure systems (energy, transport, digital communications, water, waste management) provide essential services for people and the economy. They are increasingly interdependent, so performance of one system relies on others. Infrastructure is widely regarded as an essential pillar for economic competitiveness and as a contributor to sustainability (Thacker et al. 2019).

The Infrastructure Transitions Research Consortium has over the last ten years developed a unique modelling capability, called NISMOD (Hall et al., 2016), for simulating Britain's infrastructure systems. NISMOD contains modules to simulate Britain's energy, transport, digital and water supply systems. It uses scenarios of population and the economy to estimate future demand for infrastructure services and explore the performance of infrastructure policies and investments to meet those needs. The various simulation models are integrated with a model coupling framework called smif (Usher and Russell, 2019), which orchestrates model coupling, scenario analysis and optimisation.

Now that NISMOD is fully operational there are exciting opportunities for generating new scientific insights and results to guide decision making about national infrastructure systems in Britain. The types of questions that could be explored include:

  • Examination of the implications for infrastructure service provision of different scenarios for population and economic growth;
  • Evaluation of alternative strategies to achieve net zero carbon emissions from infrastructure;
  • Quantification of the most efficient strategies for providing essential services given constraints on infrastructure investments;
  • Examination of the implications of interdependencies between infrastructure sectors, for example due to the electrification of transport;
  • Strategic planning of infrastructure at a sub-national scale e.g. the Oxford-Cambridge Arc.

The research will particularly focus on the application of multi-objective optimisation methodologies to problems of infrastructure planning. We will explore the use of robust control methods and real options analysis to test and compare adaptive strategies for national infrastructure provision.

The project will therefore involve using and adapting existing simulation models of infrastructure systems and development of methods for optimisation and adaptive planning. It will suit students from any quantified background, including engineering, mathematics, economics and the physical sciences. Students should be able to demonstrate aptitude for computer modelling and enthusiasm to address real-world problems of great policy significance.

Candidates for this project from an engineering of physical sciences background would be eligible to apply for funding from Oxford University's EPSRC Doctoral Training Partnership. Successful UK applicants will be eligible for full or part funding. Overseas applicants in need of financial support are encouraged to apply for one of Oxford's several doctoral scholarship schemes for UK or overseas students. Closing dates apply on these schemes and students are encouraged to apply early. Applications are made through the School of Geography and the Environment.

References

  • Otto, A., Hall, J.W., Hickford, A.J., Nicholls, R.J. A quantified systems-of-systems modeling framework for robust national infrastructure planning. IEEE Systems Journal, 10(2) (2016): 385-396. DOI: 10.1109/JSYST.2014.2361157
  • Hall, J.W., Tran, M., Hickford, A.J. and Nicholls, R.J. (eds.) The Future of National Infrastructure: A System of Systems Approach, Cambridge University Press, 2016.
  • Hall, J.W. Using system-of-systems modelling and simulation to inform sustainable infrastructure choices, IEEE Systems, Man and Cybernetics Magazine, DOI:10.1109/MSMC.2019.2913565.
  • Hall, J.W., Thacker, S., Ives, M.C., Cao, Y., Chaudry, M., Blainey, S.P. and Oughton, E.J., Strategic analysis of the future of national infrastructure, Proceedings of the Institution of Civil Engineers: Civil Engineering, 170(1) (2017): 39-47. DOI: 10.1680/jcien.16.00018
  • Thacker, S., Adshead, D., Fay, M., Hallegatte, S., Harvey, M., Meller, H., O'Regan, N., Rozenberg, J. and Hall, J.W. Infrastructure for Sustainable Development, Nature Sustainability, 2 (2019):324-331. DOI: 10.1038/s41893-019-0256-8.
  • Usher, W. and Russell, T., 2019. A Software Framework for the Integration of Infrastructure Simulation Models. Journal of Open Research Software, 7(1), p.16. DOI: http://doi.org/10.5334/jors.265

Planning national infrastructure, in all parts of the world, involves difficult choices about where infrastructure is located in order to efficiently provide services whilst minimising negative impacts on people and the environment. Versions of this spatial allocation problem exist in many situations. New spatial datasets from satellites, sensors and crowd sourcing are providing information that can enable better navigation of the trade-offs associated with spatial allocation.

We are currently working on two versions of this spatial allocation problem in the context of developing countries:

  1. Optimisation of drinking water supplies in coastal Bangladesh: There is extensive experience of providing drinking water infrastructure (tube well, pond sand filters) for communities in the coastal zone in Bangladesh (Flanagan et al., 2012). There is also growing interest in whether more centralised piped systems might help to improve water quality, helping to address severe problems with arsenic and saline contamination. One of the lessons that has been learnt is that different systems perform well in different circumstances.
    Thanks to the work of the REACH project, we have growing understanding of the spatial heterogeneity in Polder 29 in Bangladesh, including GIS of population of 59,000 people, a household survey and audit of water supply infrastructure. That provides evidence to develop methodology for prioritising water supply interventions in a way which is tuned to local conditions. Using a combination of GIS and optimisation (in terms of cost-effectiveness with respect to multiple criteria) it is possible to explore options for prioritising drinking water infrastructure interventions to achieve the water supply targets in SDG6. We will then seek to generalise the method to a scalable methodology that can be applied extensively in Bangladesh.
  2. Electrification of transport is widely regarded as an opportunity for developing countries to 'leapfrog' fossil-fuel dependent transport and associated infrastructure networks, by co-developing renewable energy supplies and vehicle charging points. There are however many different versions of how such systems might develop (e.g. with centralised electricity grids, or with micro-grids). What system is viable depends, in part, on local context (population density, building density, wealth, existing infrastructure), but is also subject to other big uncertainties, such as the relative price of technologies and the business models that are adopted for service provision.
    We have developed unique datasets of road infrastructure globally (Koks et al., 2019) and methodology for simulating electricity transmission and distribution networks all over the world. This is coupled with population datasets for analysing energy and transport demand and global datasets of potential for renewable energy supply. We propose to combine these datasets with different scenarios of the costs and business models of renewable energy and electric vehicles to generate efficient scenarios for roll-out of these technologies.

These are just two examples of the sorts of problems that could be addressed with methodologies for spatial allocation and optimisation (Faiz and Krichen, 2012). We expect that other opportunities will materialise during the course of the research, so the thesis will combine methodological development with a series of case studies. Overall, we would like to develop a broad framework to characterise different infrastructures and their relationship with the space and people around them. We wish to incorporate multiple sustainability indicators which can help to inform decisions about infrastructure provision to achieve the SDGs. We aim to demonstrate how market forces in infrastructure service provision (for example the proliferation of private tube wells in rural Bangladesh) can be combined with targeted development assistance and public investment to provide networks that leave no one behind.

The project will involve statistical analysis of survey data and application of methods for spatial optimisation. The derived solutions need to take account of local economic, societal and governance conditions, so the student should also study these important contextual issues. Thus the student should have a strong quantified background (e.g. engineering, economics, physics, geostatistics) but should also have a good appreciation of the wider societal context of infrastructure service provision.

Candidates for this project from an engineering of physical sciences background would be eligible to apply for funding from Oxford University's EPSRC Doctoral Training Partnership. Successful UK applicants will be eligible for full or part funding. Overseas applicants in need of financial support are encouraged to apply for one of Oxford's several doctoral scholarship schemes for UK or overseas students. Closing dates apply on these schemes and students are encouraged to apply early. Applications are made through the School of Geography and the Environment.

References
  • Faiz, S. and Krichen, S., 2012. Geographical information systems and spatial optimization. CRC Press.
  • Flanagan, S. V., Johnston, R. B. and Zheng, Y. (2012). Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation. Bulletin of the World Health Organization, 90, 839-846.
  • Koks, E.E., Rozenberg, J., Zorn, C., Tariverdi, M., Vousdoukas, M., Fraser, S.A., Hall, J.W., Hallegatte, S. A global multi-hazard risk analysis of road and railway infrastructure assets. Nature Communications, 10(1) (2019): 2677. DOI: 10.1038/s41467-019-10442-3.

The relationship between infrastructure provision and spatial patterns of economic activity is only partially understood. Infrastructure serves multiple purposes, as a factor of production, providing access to markets and enabling agglomeration and innovation. Because of the complexity of these processes, the empirical evidence of the effects is often inconclusive. Theoretically, the relationship has been addressed through the frameworks of New Economic Geography, input-output modelling and spatial computable general equilibrium models. Each of these approaches has their limitations as well as their strengths.

Vast investments in infrastructure, in particular in Asia, mean that there are large-scale changes in the spatial structure of global networks and the economies that they serve. This means that there are new empirical data to characterise these phenomena and parameterise models.

The proposed research will take a combination of a model-based and empirical approach to understanding the relationship between infrastructure and economic development at broad scales. The model-based analysis will start with stylised models, possibly reproducing the insights from NEG models, but introducing other functions of infrastructure (e.g. energy and water as factors as production; roads as factors of access to economic activities). Meanwhile, we will seek datasets that can be used to characterise spatial changes. The analysis will be used to understand future demands for infrastructure services and how patterns of economic development may evolve in future. The work will be applied to a large geographical region, such as a national-scale or multi-national scale to see how infrastructure developments can create positive and negative effects for different regions.

The project will involve computer model development, along with parameterization and validation using empirical data. Candidates must therefore be ready to take on a highly interdisciplinary analysis and modelling task. It will require a candidate with advanced computational and mathematical skills, coming from an engineering, economics or physical sciences background. Students should be able to demonstrate aptitude for computer modelling and enthusiasm to address real-world problems of great policy significance.

Candidates for this project from an engineering of physical sciences background would be eligible to apply for funding from Oxford University's EPSRC Doctoral Training Partnership. Successful UK and EU applicants will be eligible for full or part funding. Overseas applicants in need of financial support are encouraged to apply for one of Oxford's several doctoral scholarship schemes for UK or overseas students. Closing dates apply on these schemes and students are encouraged to apply early. Applications are made through the School of Geography and the Environment.

References
  • Venables, A., Laird, J. and Overman, H. Transport investment and economic performance: Implications for project appraisal. (Department for Transport, 2014).
  • Bird, J. H. and Venables, A.J. Growing a Developing City: A Computable Spatial General Equilibrium Model Applied to Dhaka. The World Bank, 2019.
  • Lall, S. V. and Mathilde S. M. L. "Who Wins, Who Loses? Understanding the Spatially Differentiated Effects of the Belt and Road Initiative." 2019.
  • Hall, J.W., Tran, M., Hickford, A.J. and Nicholls, R.J. The Future of National Infrastructure: A System of Systems Approach, Cambridge University Press, 2016.

There is growing concern about the resilience of water supplies in Britain in the context of climate change and increasing population in some parts of the country. These risks have been studied in Water UK's National Water Resources Long-Term Planning Framework study, in the National Infrastructure Commission's study on water scarcity and the Environment Agency's study Meeting our Future Water Needs. The water group in the Environmental Change Institute made significant contributions to each of these studies. In the first of these studies a unique national water resource systems model was developed, which has since been extended and improved. The model represents all of the main water users in England and Wales. It is driven by a unique event set of simulated droughts (Guillod et al., 2018). The simulation model is combined with an economic model to estimate the impacts of droughts on the economy (Friere et al. 2017, 2018). This model now provides a powerful platform for exploring a range of questions about the resilience of Britain's water supplies in the face of uncertain future conditions, and for assessing the potential effectiveness and trade-offs associated with alternative policies and investments, such as water storage, water transfers and water reuse. These possible decisions will be explored using methods for multi-objective optimisation and robustness analysis (Borgomeo et al 2016, 2018). The research is likely to result in new insights into the conditions in which severe water shortages might occur in Britain and the associated scientific uncertainties. It will go on to evaluate possible responses to enhance the resilience of water supplies for a range of different users, including public water supplies, farmers and industrial users of water. The project will in particular examine the benefits and impacts of water transfers between river basins in the UK.

The project will involve a combination of water resource systems modelling, hydrology of climate change and decision analysis. It will suit students from any quantified background, including engineering, economics, physical and environmental sciences. Students should be able to demonstrate aptitude for computer modelling and enthusiasm to address real-world problems of great policy significance.

This project is advertised as part of Oxford University's Doctoral Training Partnership in Environmental Research, so UK and EU applicants will be eligible for full or part funding. Overseas applicants in need of financial support are encouraged to apply for one of Oxford's several doctoral scholarship schemes for UK or overseas students. Closing dates apply on these schemes and students are encouraged to apply early. Applications are made through the School of Geography and the Environment.

References
  • Borgomeo, E., Mortazavi-Naeini, M., O'Sullivan, M.J., Hall, J.W. and Watson, T. Trading-off tolerable risk with climate change adaptation costs in water supply systems. Water Resources Research, 52(2) (2016). DOI: 10.1002/2015WR018164.
  • Borgomeo, E., Mortazavi‚ÄźNaeini, M., Hall, J. W. and Guillod, B. P. Risk, Robustness and Water Resources Planning Under Uncertainty. Earth's Future, 6(2018): 468-487. DOI:10.1002/2017EF000730
  • Guillod, B.P., Jones, R.G., Dadson, S., Coxon, G., Bussi, G., Freer, J., Kay, A.L., Massey, N.R., Otto, F.E., Sparrow, S.N., Wallom, D.C.H., Allen, M.R. and Hall, J.W. A large hydro-meteorological dataset of potential past, present and future time series over the UK, Hydrology and Earth System Sciences, 22(1) (2018): 611-634. DOI: 10.5194/hess-22-611-2018
  • Ives, M.C., Simpson, J.M., Hall, J.W. Navigating the water trilemma: a strategic assessment of long-term national water resource management options for Great Britain, Water and Environment Journal, DOI: 10.1111/wej.12352.
  • Freire-Gonzáleza, J., Decker, C. and Hall, J.W. A linear programming approach to water allocation during a drought. Water, 10(4) (2018):363. DOI:10.3390/w10040363.
  • Freire-Gonzáleza, J., Decker, C. and Hall, J.W. A scenario-based framework for assessing the economic impacts of potential droughts. Water Economics and Policy, 3(4) (2017) 1750007 DOI: 10.1142/S2382624X17500072.
  • Freire-Gonzáleza, J., Decker, C. and Hall, J.W. The economic impacts of droughts: a framework for analysis. Ecological Economics, 132 (2017): 196-204. DOI: 10.1016/j.ecolecon.2016.11.005.

Managing water resources inevitably involves trade-offs between human and environmental needs for water. In recent years significant steps have been taken to limit unsustainable water withdrawals in England that are potentially harming the natural environment. This has been based upon assessments of environmental water requirements. In practice the sensitivity of the aquatic environment to altered flow regimes is not fully understood. We know that water bodies in a healthy condition are more able to recover from occasional shocks like droughts. However, knowledge of the resilience of aquatic ecosystems is limited. There have been many studies of restoration projects, but the evidence base is difficult to generalize. Evidence of ecosystem response to droughts is bound to take a long time to acquire because these are rare events. In the meantime, decisions have to be made about the management of water resources. There may be more opportunities for enhancing ecosystems, for example through constructed wetlands, which may also contribute to the resilience of water supplies for human consumption. Given our ignorance about the potential effectiveness of these schemes, the approach needs to be one of 'adaptive management' - of piloting schemes and embedding learning from monitoring programmes in future cycles of decision making.

We have done extensive research on the risk and resilience of water resource systems. We now wish to extend that analysis to incorporate ecosystem resilience. The approach will be to develop and test by simulating an adaptive management approach. The research will involve identifying a range of possible ecosystem restoration interventions and assembling evidence on their hydrological performance and ecosystem response. In the context of a case study catchment (possibly a lowland groundwater dominated chalk stream) we will propose a sequence of possible ecosystems interventions and explore their potential effect on the resilience of water supplies for human and ecological purposes. We will simulate how learning from system response could be incorporated in future cycles of decision making. This will help to make the case for catchment restoration schemes and the monitoring programmes with which they will need to be accompanied.

The project will involve a combination of catchment modelling and decision analysis. It will suit students from any quantified background, including engineering, economics, physical and environmental sciences. Students should be able to demonstrate aptitude for computer modelling and enthusiasm to address real-world problems of great policy significance.

This project is advertised as part of Oxford University's Doctoral Training Partnership in Environmental Research, so UK and EU applicants will be eligible for full or part funding. Overseas applicants in need of financial support are encouraged to apply for one of Oxford's several doctoral scholarship schemes for UK or overseas students. Closing dates apply on these schemes and students are encouraged to apply early. Applications are made through the School of Geography and the Environment.

References
  • Borgomeo, E. Mortazavi-Naeini, M., O'Sullivan, M.J., Hall, J.W. and Watson, T. Trading-off tolerable risk with climate change adaptation costs in water supply systems. Water Resources Research, 52(2) (2016). DOI: 10.1002/2015WR018164.
  • Borgomeo, E., Pflug, G., Hall, J.W. and Hochrainer-Stigler, S., Assessing water resource system vulnerability to unprecedented hydrological drought using copulas to characterize drought duration and deficit, Water Resources Research, 51 (2015), 8927-8948. doi:10.1002/2015WR017324.
  • Borgomeo, E., Hall, J.W., Fung, F., Watts, G., Colquhoun, K. and Lambert, C. Risk based water resources planning, incorporating probabilistic non-stationary climate uncertainties. Water Resources Research, 50 (2014): 6850-6873.
  • Lake, P.S. 2003. Ecological effects of perturbation by drought in flowing waters. Freshwater Biology, 48(7), pp.1161-1172.
  • Poff, N.L. et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nature Clim. Change 6, 25-34, doi:10.1038/nclimate2765 (2016).

There is growing interest in the potential for Nature-Based Solutions (NbS) to substitute for or complement conventional 'grey' infrastructure. This could include:

  • Ecosystem restoration, afforestation and changes to land management practices to reduce flood risk, substituting for conventional flood defences;
  • Creation or restoration of wetlands to enhance the recharge of groundwater supplies, substituting for dams and reservoirs;
  • 'Blue-green' infrastructure in cities to help address the risks of surface water flooding, substituting for piped urban drainage, whilst also providing cooling during heatwaves substituting for air conditioning;
  • Mangrove and coastal ecosystem restoration to protect against storm surges and hurricanes, substituting for coast protections;
  • Restoration of catchment vegetation to purify water, substituting for water treatment.

As well as providing ecosystem services that may enhance or even improve on 'grey' infrastructure, these Nature-Based Solutions (NbS) provide multiple co-benefits, including carbon sequestration, natural habitats for biodiversity that can support agricultural productivity (pollination, pest control and soil formation), and spaces for recreation that support mental and physical health. There is a growing number of examples of implementation of these NbS, though the evidence for their effectiveness usually comes from relatively small case studies (see; www.naturebasedsolutionsevidence.info).

The Infrastructure Transitions Research Consortium has over the last ten years developed a unique modelling capability, called NISMOD (Hall et al., 2016), for simulating infrastructure systems in the UK and in several other countries around the world, including St Lucia and Ghana. We wish to take NISMOD a significant step further by incorporating NbS as an infrastructure option and comparing the costs and benefits of NbS with 'grey' infrastructure. We would like to conduct a large-scale assessment so we can compare national infrastructure plans with integrated pathways that incorporate NbS to the greatest possible extent. We wish to demonstrate how nature can be preserved and restored whilst delivering the infrastructure services that people need and plotting a pathway of climate-compatible development.

The research will involve analysis of the evidence for the socioeconomic and ecological effectiveness of the full range of NbS and then development of methodology to identify how and to what extent NbS might substitute for or complement conventional grey infrastructure investments. We will examine ways of quantifying the costs and benefits of NBS alongside grey infrastructure. We will identify a large-scale domain, which may be at national or continental scales, and apply spatial optimisation methodology to incorporate NBS in infrastructure investment programmes.

The project will involve a combination of evidence review, geospatial analysis, decision analysis and multi-objective optimisation. It will suit students from any quantified background, including environmental sciences, engineering or economics. Students should be able to demonstrate aptitude for computer modelling and geospatial analysis, and enthusiasm to address real-world problems of great policy significance.

This project is advertised as part of Oxford University's Doctoral Training Partnership in Environmental Research, so UK and EU applicants will be eligible for full or part funding. Overseas applicants in need of financial support are encouraged to apply for one of Oxford's several doctoral scholarship schemes for UK or overseas students. Closing dates apply on these schemes and students are encouraged to apply early. Applications are made through the School of Geography and the Environment.

Infrastructure systems that deliver essential services to society (e.g. energy, water, transport and telecommunications) are increasingly regarded as being cyber-physical systems, as they are controlled by digital networks and depend upon software and digital communication systems. The risks to these systems have been widely studied, but from rather different perspectives. There has been extensive research, much of it by our group, on physical risks to infrastructure networks, with a focus on weather-related extremes (Koks et al., 2019, Lamb et al., 2019) but also including terrorist threats (Oughton et al., 2019). Meanwhile, there has been extensive research on questions of cyber security for infrastructure networks, for example relating to the security of the Internet of Things (IoT). Our aim in this project is to bring these perspectives together.

In the first instance the focus will be on modelling the networks of interdependent electricity and telecommunications systems. We have a fairly complete model of electricity transmission and distribution networks in Britain, and recently as part of research with the National Infrastructure Commission we coupled this with a representation of telecommunications networks in Britain.

The DPhil project will involve modelling of electricity and digital communications networks (including SCADA systems), which we will seek to validate with data on faults in the electricity and telecommunications networks. This will be used to model possible interdependent and cascading failures. The analysis will be used to identify how these interdependent networks can be made more resilient. For example, what is the potential benefit of increased connectivity or backup capacity within the network? We also wish to examine how technological trends (like electrification of transport and the proliferation of renewable energy supply technologies) could impact the resilience of infrastructure networks.

The project will therefore involve using and adapting existing simulation models of infrastructure systems and development of methods for vulnerability analysis and optimisation. It will suit students from any quantified background, including engineering, mathematics and the physical sciences. Students should be able to demonstrate aptitude for computer modelling and enthusiasm to address real-world problems of great policy significance.

Candidates for this project from an engineering of physical sciences background would be eligible to apply for funding from Oxford University's EPSRC Doctoral Training Partnership. Successful UK applicants will be eligible for full or part funding. Overseas applicants in need of financial support are encouraged to apply for one of Oxford's several doctoral scholarship schemes for UK or overseas students. Closing dates apply on these schemes and students are encouraged to apply early. Applications are made through the School of Geography and the Environment.

References:
  • Koks, E., Pant, R., Thacker, S., Hall, J.W. Understanding business disruption and economic losses due to electricity failures and flooding, International Journal of Disaster Risk Science, 10(2019): 421-438. DOI:10.1007/s13753-019-00236-y
  • Lamb, R., Garside, P., Pant, R. and Hall, J.W. A network-scale analysis of the risk of railway bridge failure from scour during flood events in Britain. Risk Analysis, 39(11) (2019): 2457-2478. DOI: 10.1111/risa.13370.
  • Oughton, E., Ralph, D., Leverett, E., Pant, R., Thacker, S., Hall, J.W., Copic, J., Ruffle, S. and Tuveson, M. Stochastic counterfactual analysis for the vulnerability assessment of cyber-physical attacks on electricity distribution infrastructure networks, Risk Analysis, 39(9) (2019): 2012-2031. DOI: 10.1111/risa.13291.
  • Thacker, S., Barr, S., Pant, R., Hall, J.W., and Alderson, D. Geographic hotspots of critical national infrastructure. Risk Analysis, 11(1) (2018): 22-33. DOI: 10.1111/risa.12840.
  • Thacker, S., Kelly, S., Pant, R. and Hall, J.W. Evaluating the benefits of adaptation of critical infrastructures to hydrometeorological risks. Risk Analysis, 38(1) (2018): 134-150. DOI: 10.1111/risa.12839.
  • Thacker, S., Hall, J.W. and Pant, R. Preserving key topological and structural features in the synthesis of multi-level electricity networks for modeling of resilience and risk. Journal of Infrastructure Systems, ASCE, 24(1) (2018): 04017043. DOI: 10.1061/(ASCE)IS.1943-555X.0000404
  • Thacker, S., Pant, R. and Hall, J.W. System-of-systems formulation and disruption analysis for multi-scale critical national infrastructures, Reliability Engineering and Systems Safety, 167(2017): 30-41. DOI: 10.1016/j.ress.2017.04.023.
Project area:

Island biogeography and conservation biogeography.

Project attributes:

The student will work on developments in island theory accounting for diversity variation in islands and/or habitat islands as a function of biotic and abiotic controls, involving the challenge of interconnecting varied forms of data (macroecological, metacommunity &/or phylogenetic data) within the framework of recent developments in mixed effect modeling, and potentially addressing both theoretical and practical conservation goals. The student will join an international collaborative network focused on a wide range of themes within island ecology and island biogeography, including species-area relationships, species incidence functions, species abundance distributions, development and testing of the general dynamic model of oceanic island biogeography. The project is likely to involve primary field data combined with analysis and modelling of secondary data sets.

The dry valleys of the Namibian Skeleton Coast are significant emitters of atmospheric mineral dust. Preliminary studies show that Holocene valley fills are the primary source of dust (Thomas et al., in press). There are however distinct spatial variations in both dust sources, revealed by remote sensing analysis, and the accumulation of fluvial valley deposits. The latter are a potentially significant source of Holocene palaeoclimatic data, but disparate studies to date reveal complex and sometimes conflicting records of climate change (Stone and Thomas, 2013). The aim of this project is to provide a robust, chronometrically controlled, record of extensive valley fill deposits and past fluvial system behaviour. This will involve examining the spatial variability in deposit characteristics and age that will allow potential dust emission sources and controls to be identified. The initial focus will be on the Huab Valley system, but this is extendable to other valleys as results emerge. The project will include fieldwork in the Skeleton Coast region that will examine and map sedimentary exposures and drill fill deposits, allowing sampling for sedimentary analyses including mineral properties, provenance work and age control through OSL dating. This project offers a unique opportunity to develop and apply field and laboratory skills, and will make a major contribution to southern African Quaternary research and investigations of atmospheric dust emissions, both major research themes in the School.